RICHARD KAYE

\Vinesweeper |

NP-completeness

Many programming problems require the design of an al-
gorithm which has a “yes” or “no” output for each input.
For example, the problem of testing a whole number for
primality requires an algorithm which answers “ves” if the
input number x is prime, and “no” otherwise.

In trying to devise an algorithm to solve a given problem,
one aspect of obvious practical importance is the time it
takes to run. Since a typical algorithm may take more time
on some inputs than others, the running time of an algorithm
is usually regarded as a function of the input. For technical
reasons, it is convenient to consider the way this function
varies with the number of symbols required to write the in-
put. (This number of symbols is usually denoted by n.) For
example, for the input 17, our algorithm may require this
number to be written in binary (as 10001), so here n = 5.

Different algorithms for the same problem may run in
different amounts of time, due perhaps to the different cod-
ing methods used or to different theoretical bases for the
algorithms. However, it may be that for a particular prob-
lem, all valid algorithms can be shown to take at least a
certain amount of time, due to the inherent difficulties in
the problem being solved. Complexity theory aims to study
the inherent difficulties of problems, rather than the time
or memory resources used by any particular algorithm or
program.

It is certainly possible to find problems that can only be
solved on a computer using a huge amount of time. It is
also possible to find sensible-sounding problems that can-
not be solved on a computer at all! However, there are two
classes of problems that are of greatest interest for com-
plexity-theorists.

The first of these classes is the collection, P, of Poly-
nomial-time computable problems. These are the prob-

~-complete

lems that can be solved on a normal computer and within
an amount of time of order n, or v, or n?, orn?, (As be-
fore, n is the number of symbols required to write down
the input to the problem. Note in particular that the run-
ning time of such a program is bounded by a polynomial
in the length of the input, not the input itself.)

Of course, for a rigorous treatment of the subject, a pre-
cise definition of the mathematical model of computer we
are using and what constitutes the running time of the com-
puter, must be given. For the purposes of this article I will
be less precise, but give here the two main points. Firstly,
our computers will have an unlimited amount of memory—
that is to say that they always have enough memory to com-
plete the computation in hand. This does not seem partic-
ularly restrictive, as any terminating computation can only
use a finite amount of memory anyway, and for most al-
gorithms considered here, the amount of memory required
for any particular computation can be estimated fairly ac-
curately in advance. Secondly, the time taken by the com-
puter is the number of steps required, where a single step
can only process a single character’s worth of information
and a “character” comes from a fixed alphabet. (Characters
could be single bits, or bytes, or 32-bit words, or symbols
from some other finite set, provided this finite set is spec-
ified in advance.) To give an illustrative example, observe
that arbitrary natural numbers can be represented on such
computers (as sequences of binary digits, for example) and
two such numbers can be multiplied together, but the time
taken to multiply these numbers will not be a single step—
it will instead be a function of the length of the numbers,
for the computer can only process the numbers character-
by-character.

A large amount of heuristic evidence exists supporting
the thesis that the notion of a polynomial-time computable

D 2000 SPRINGER-VERLAG NEW YORK, VOLUME 22, NUMBER 2 2000 9

problem is independent of the particular computer model
used. That is, if a problem is solved in polynomial time on
one computer then the algorithm used can be transferred
to a different kind of computer and will also run in poly-
nomial time there. There is also strong evidence that sug-
gests that the complexity class P consists of precisely those
problems that are soluble in practice on an ordinary com-
puter. Problems not in P may be theoretically soluble, but
only with impractical running times even on the very fastest
computer.

The second class of problems of interest is the class of
Nondeterministic Polynomial-time computable problems,
NP. These are problems that can be solved in polynomial
time as before, but on a special “enhanced” computer able
to perform “nondeterministic” algorithms. The reason for
the interest in NP is that this class contains a great many
problems of significant practical importance that are not
known to be soluble by an ordinary polynomial-time algo-
rithm, including some very well-known problems such as
that of the “travelling salesman.”

To define NP, we just need to explain the idea of a nown-
deterministic algorithm. These algorithms are like ordi-
nary (“deterministic”) ones except that there is an extra
kind of instruction allowed which instructs the computer
to guess a number. The computer performing this instruc-
tion is assumed to have the very special ability always to
make a correct guess if one is available, and it is this as-
pect of nondeterminism that is difficult to implement in
practice! Having made a guess, the nondeterministic algo-
rithm is required to verify that the guess was indeed a cor-
rect one, because only by doing this can it determine
whether a correct guess was possible at all.

For example, it is easy to use nondeterminism to tell if
a whole number input x is composite (i.e., not prime). The
machine should guess two whole numbers y, z > 1 and
compute their produet, yz. If y2 = @ then the machine has
verified that the guess was correct, so may answer yes, the
number x is composite. If yz # v then the machine may
safely answer no, as in this case it is allowed to assume
that no better guess was available, ie., that @ really is
prime. Since a single multiplication can be carried out
rather quickly, this nondeterministic machine will decide
if 2 number is composite very rapidly without any lengthy
search over all the possible factors.

A nondeterministic machine is not allowed to guess the
answer (“yes” or “no™) to the problem and output that, be-
cause the machine would not have verified this guess. The
special power of these machines lies in the fact that it is
not necessary to verify that any particular guess was in-
correct (because only correct guesses are chosen if they
are available). It is only required to verify that a guess is
correct. Because of the different nature of these “yes” and
“no” answers, it is not always true that the complement of
a problem solvable using nondeterminism is as easy to
solve nondeterministically. In the case of composite and

This algorithm is based on the property that a num-
ber x = 2 is prime if and only if there is y such that
v '=1modrandy! = I modx forallg<a — L
It is recursive in the sense that it calls itself with
smaller values.

1. Oninput x, if & = 2 answer “yes,” and if x = 1 an-
swer “no.” Otherwise go to the next step.

2. Guess y and verify that y* ~ ' = 1 mod x. (If this
fails, answer “no” and stop.)

3. Guess a prime factorisation ay as . . . a, of x — 1
and run the algorithm recursively to check that
each a; is prime.

4. Verify that 20v = D/ == | mod & for each prime fac-
tor a; of & — 1. If any of these fail, answer “no;”
otherwise answer “yes.”

Figure 1. Pratt's nondeterministic algorithm for primality.

prime numbers, for example, it is not immediately obvious
how one might show that the set of primes (the comple-
ment of the set of composites) is recognizable in polyno-
mial time by a nondeterministic algorithm. The problem
here is to guess something that shows the input v is prime,
and then to verify our guess quickly, but what should we
guess? In fact, there is just such a “certificate of primality,”
as was first observed by Pratt! (see Figure 1).

Needless to say, no “nondeterminism chip” has been de-
veloped to use in real computers (though some believe that
quantum mechanics implies that something rather like non-
determinism might be built into a usable device).

As already mentioned, the class NP of Nondeterministic
Polynomial-time problems is the class of problems that
can be solved in polynomial time on a nondeterministic
machine. It is generally believed that nondeterminism re-
ally does introduce problems that were not already in P,
and also that there are NP problems whose complement
does not lie in NP, but here lies the main problem. To date,
no one has managed to find an NP problem and prove it is
not in P. The famous “P = NP” question is whether there
is such a problem. This is one of the most important open
problems in mathematics—perhaps even the most impor-
tant open problem. It has the same status as Fermat's last
theorem before Wiles's solution, with a long history (going
back well before computers). The majority of mathemati-
cians believe that P and NP really are different (though sev-
eral well-respected mathematicians consider it quite plau-
sible that P = NP), but no one has a proof. Every
mathematician dreams of solving a problem like this, and
a huge number have tried, but no one has succeeded.

The difficulty of proving that P # NP is not due to lack
of examples of interesting problems in NP. In fact, mathe-
maticians now have a huge list of problems—including the
travelling salesman and many others of practical interest—

'W.R. Pratt, “Every prime has a succinct certificate,” SIAM J, Comput, 4'(1978), 214-220.

10 THE MATHEMATICAL INTELLIGENCER

put g. The problem SAT is

of C is true?

SAT is NP-complete.

A|-A A|B|AyYB A|B|AANB A|B|A+B
T|F T T T|[f| ¥ T|r| P
Fl T T\F| T T|F| F T|F| T
FlT| T F|T| FP F|T| T
FlFl F FIFl F FIFI| F

A boolean circuil is a circuit built of the familiar logic gates such as anp (/\), or (\/), X0R (+), and NoT (=), each
with inputs that may be true (7) or false (F'). A circuit will have several inputs labelled py, ps, . . .

Given a boolean circuit €, is there some combination of true/false values for the inputs of C so that the output

There are algorithms to answer this question, but none running in polynomial time is known. The obvious algorithm
(to check all possible combinations of the inputs of C) takes too long, as there are 2" combinations for » inputs.

, P» and an out-

Figure 2. The NP-complete problem SAT.

which are in NP and for which we have a proof that if P #
NP, then the problem is nof in P. A problem, A, is typically
shown to be of this type by proving that it is NP-compleie,
i.e., that every other NP problem, B, can be solved by a de-
terministic polynomial-time program which converts its in-
put, x, for the problem B to an input, f{x), for the problem
A, with the property that the answer to problem B for in-
put x is the samne as the answer to problem A for input f(x).
If there is a polynomial-time computable function f{x) with
these properties, we say the problem B reduces to the prob-
lem A. Loosely speaking, a problem B reduces to a prob-
lem A, if A “includes” all instances of B as special cases,
and the NP-problem A is NP-complete if it “includes” (in
this sense) all other NP-problems.

To see the importance of this, consider a problem B in
NP, and suppose also that we are given an NP-complete
problem, A. Then there is a polynomial-time computer pro-
gram that converts each instance, x, of the problem B to
an instance, f{ir), of the problem A. But if our NP-complete
problem A is actually in P, the problem A for f{x) can be
solved in polynomial time by a deterministic algorithm,
hence B also can be solved in deterministic polynomial
time, because the answers for A on input f{x) and B on in-
put x are the same.” This also applies to any other C in NP
(with a different function f{r) of course), so if A is in P,
then every problem in NP will be in P, i.e., P = NP.

Cook” and, independently, Levin? first showed that NP-
complete problems exist. In particular, the problem SAT
of logical satisfiability (see Figure 2) is NP-complete.

Although there are a great many NP-complete problems of
practical importance, no one has found one which may be
solved by a polynomial-time algorithm, and it is widely be-
lieved that no such exist. Turning a necessity into a virtue,
many people have attempted to design cryptosystems so
that a potential codebreaker would have to solve an NP-
complete problem in order to break the code—taking too
much time even on the fastest computer. Either way, an
answer to the P = NP question would have significant prac-
tical importance.

The Minesweeper Game

Many of the ideas mentioned above may be illusirated ef-
fectively with a game many readers will be familiar with.
Minesweeper comes with Microsoft’s Windows operating
system.? In it, the player is presented with an initially blank
grid. Underneath each square there may be a mine, and the
object of the game is to locate all these mines without be-
ing blown up. You select a square to be revealed; if it is a
mine you are blown up (and the game is over), but with
luck, perhaps it isn’t. In this second case, when the square
is revealed you see a number from 0 to 8, which is the num-
ber of mines in the eight immediately neighbouring
squares. Figure 3 shows a typical position in such a game.
The numbered squares are the squares that have been re-
vealed, and no others have been uncovered yet. Two of the
unrevealed squares are marked with a *, and these squares
have already been identified as having mines in them. The
others have been labelled with letters for identification.

“There Is an important technical consideration omitted from the argument here: if A is In P, ther the running time for the algorithm for 4 on input fix) is bounded by a
palynamial in the length of fix), not the lenath of x itself. However, fix] itself is computed by a polynomial-time algorithm, and it is straightforward to deduce from this
that the length of fix) is itself bounded by a polynoriial in the length of x, so the algorithm just outlined for 8 is really polynomial time in the Input x.

#8.A. Cook, “The complexity of thearem proving procedures,” Proc. Third Annual ACM Symposium on the Theory of Computing (1971), 151-158.

“L. Levin, *Universal search problems," Problems of Information Transmission @ (1973), 265-266.

S"Windows" Is a trademark of Microsoft. The auther has no connections with Microsoft, and nothing here should be regarded as cormrment on any of Microsoft's products.

VOLUME 22, NUMBER 2, 200 11

o e =11 ol [w)
o] B Gl 21 R 0
== * | % |—
el 1 PN 20 PN S
(g3] [es]] los] Los] Fo

olo|o|rs ||

Figure 3. An example position in Minesweeper.

Faced with such a position in a game, there are several
things one can deduce about the position of the mines, and
which squares can be revealed safely. First, the squares
marked A have mines, because of the 2s just below them.
Next, the squares marked B also have mines because of
the 4s and the 5 to their left. (These numbers include the
two previously identified mines marked with stars.)
Similarly, the square C has a mine. It follows that the
squares marked D and E are clear since the mines at A, B
and C account for the numbers neighbouring these squares.
At this stage, it is not possible to determine if square F has
a mine or not. However, the player may mark the identi-
fied mines A, B, C and uncover the safe squares D and E,
and from the number revealed at square D (a 2 or a 3) de-
termine if square F is safe or has a mine, thereby clearing
the whole board.

Now that the rules of the game have been explained, the
reader may like to consider the configuration in Figure 4.
This particular game is played on a 6 X 6 board, and six-
teen squares are revealed as shown. It is possible to de-
duce the location of all the mines from the information
given.

The general Minesweeper problem is: Given a rectan-
gular grid partially marked with numbers and/or mines,
some squares being left blank, to determine if there is some
pattern of mines in the blank squares that give rise to the
numbers seen. In other words, to determine if the data

L=l § ok | S0 | o]
[) fan} e} | 5]
RIOIO|N
[-R 1 =0 LR | &

Figure 4. Determine the location of all mines.

given are consistent. This is a typical yes/mo problem, as
discussed above, and if we could solve this problem effi-
ciently on a computer, we would have an excellent method
for playing the game. To determine if a square is safe, we
could write down the configuration we currently see with
a single change made by marking the square in question
with a mine, and feed this into the computer; if the com-
puter says this pattern is inconsistent, then there is no mine
at the square in question and it is safe to reveal it, other-
wise there may be a mine. Similarly, by changing the de-
scription of the square in question to one containing a “0”,
then a “1”, and so on up to “8”, we may determine if it is
correct to identify a mine at that square.

The Minesweeper problem is in NP, for to determine if
an incomplete description is consistent, it suffices to guess
the positions of the mines and then verity that these mines
produce the numbers seen. It is not at all clear whether the
complementary problem—whether some input configura-
tion is inconsistent—is in NP, for what might we guess to
show inconsistency? It is also reasonably straightforward
to see that the Minesweeper problem can be reduced to
SAT, for the rules of the game and any particular configu-
ration can be described by a boolean circuit (see Figure 5).

In fact, the Minesweeper problem is NP-complete. This
means it is just as difficult as any of the other NP-complete
problems (such as SAT, the travelling salesman, and so on)
and it is highly unlikely that there is an efficient algorithm

Consider a three-by-three block of squares labelled as shown.

b

¢

e

<

i

square e can be described by the following statements:

1. precisely one of ey, ey, €, . . ., e is true;

Let ay, denote “there is a mine at a,” and for 0 = j = 8 let ¢; denote “there is no mine at ¢ and precisely j mines in
the neighbouring squares around a”; and similarly for b, ¢, d, . . .

2. fork=0,1,...,8,if ¢ is true then precisely k of @, by, ¢y Qs frns Guny Fomy T Are true;

and these can all be expressed (in a rather cumbersome fashion) by boolean circuits in the 90 inputs a,,, aq, . . . ,

, i. Then the rules of Minesweeper for the centre

ig. If we let C be the circuit consisting of all of these circuits for all points in the rectangular grid in place of e, the
outputs of all these being combined into a single AND gate, then the Minesweeper problem becomes equivalent to
an instance of SAT: given certain inputs for C being true or false, are there truth values for the other inputs that
makes the output of the whole circuit C true?

Figure 5. Reduction of the Minesweeper problem to SAT.

12

THE MATHEMATICAL INTELLIGENCER

for solving it. One way to prove Minesweeper is NP-com-
plete is to show how to build “computers” using Mine-
sweeper configurations. Since computers can be thought
of as being made out of wires and logic circuits, that is
what we will try to imitate in Minesweeper. In fact, as SAT
is NP-complete, this suffices, because we will have shown
how SAT reduces to Minesweeper, and Cook’s result shows
that any NP problem can be reduced to SAT.

Boolean Circuits in Minesweeper

Examine the configuration in Figure 6. (Here, again, the
letters & and & " label unrevealed squares which may or may
not contain mines.) A moment’s thought will show that
there are just two possible configurations: either all of the
squares marked x contain a mine and those marked &' do
not, or else the other way round.

We shall regard this as a wire carrying a value which is
true or false depending on whether the s or the a’s have
the mines. To define the value true or false carried in the
wire precisely, we arbitrarily choose a direction for the
wire—here going from left to right—and say that the value
is true if the xs are mines, and false otherwise. In other
words, if the squares just behind the centre 1s are mines
(“behind” meaning in the sense of the chosen direction of
the wire) then the value carried is true, and it is false oth-
erwise. Note in particular that the truth of the signal in the
wire is defined relative to its direction and the position of
the centre Ls, not in terms of any absolute position on the
grid.

We will need to be able to bend wires, and to split them.
Figures 7 and 8 show how to do this. Figure 7(a) is a sim-
ple 90° bend in the wire. Figure 7(b) shows how a wire can
be terminated. In these two diagrams, the squares marked
* have mines in them. Such configurations can be given by
explicitly marking the square as having a mine, but in all
of the configurations here it is not necessary to do so. In
these and all the following diagrams, the areas outside the
bounding lines are assumed known to contain 0s, and in
particular do not contain mines, and all the positions of the
mines indicated by *s on the diagrams can be deduced from
the numbers given. For (a), the mines are located by the
1221 to the top and to the right and the 3 between them,
and in (b) the mines are located by the 12321 to the left.
Figure 8 shows a way of “splitting” a wire. Notice that the
outputs are two signals X and an inverted signal X'. Any of
these wires can be terminated by a piece as in Figure T(b)
and the splitter can be combined with bends and further
splitters, to make splitters with any number of outputs.

Figure 9 shows how to construct a NOT gate (similar to

X —
-10|0(0]l0JolojolofolojolololOlOfO]-
o o 0 0 e 1
Az|llz|z|l|2' |zl |z|1]|2 |z |1 |z |z)-
o 00 8 [e 8 8)] [t o e

10/0f{0j0j0l0]J0oJOjOfolOfOfOlO[0O]O}-

Figure 6. A wire.

X— |1]2(2]1

11]1(1]2]*[*]|3]|1

A1z |z |1z [x| *]2

111111 2]|z[=]|2
L1121 1|11 X —
1la'| 1 2|x[3]1{1)1]|1|1}-
Lkl X 3|*|z'|z|1|z'|z|1})-
1[1[1]y 2« [3[1lil1[1]1}-
4 EX B 1 [1

(a) (b)

Figure 7. (a) A bent wire. (b) A terminated wire..

58

1x1;:

1)zl
X— l1]1(1] X! —
11 LT L] L s LA
Az |1z’ 2]2']1 |z |2’
e 15 00 O I 1

) 1

1 1

1 1

Ay

Figure 8. A three-way splitter.

part of the splitter in Figure 8). This is obviously an im-
portant device for logic circuits, but it is useful here in one
other important respect: since we defined truth/falsity in a
wire relative to the position of the centre 1s in the wire,
we may find a problem when we want to combine two or
more signals if they are not aligned correctly. Figure 10
gives a configuration made from two NOT gates and pro-
vides one possible solution: this device enables the align-
ment of the 1Is in three-by-three blocks to change so that
the wire in question can be used as the input to some other
device placed just about anywhere on the grid. (It is also
possible to make a phase-changer out of three bent pieces
of wire of the correct length.)

So far the configurations have been comparatively simple,
but in order to mimic arbitrary boolean circuits we will need
to have AND, OR, XOR gates, and so on. At first sight, it would
seem that just the AND gate will suffice, because (as is well
known from digital cireunits) any gate or boolean circuit can
be made from a combination of AND and NOT gates. For ex-
ample, we can make up an OR gate from AND and NOT gates
by the familiar formula A/ B = —(—A /\ —B). But in prin-
ciple there could still be a difficulty, in that we have not

X — 111(1 X' —

11]1|1fj1]21 |2 {*|2|2|1)2]1|2}--

1z (2|12 [z|3|2[3|zlz'| 1]z |2} --

T3 P L) 2 = 2012 1k
AR E!

Figure 9. A noT gate,

VOLUME 22, NUMBER 2, 2000 13

X — 111(12(1(1 X —
4111 11]1 |12 *|3}={2]1|1]1]1]|1}-
Az |z |12 |z [3]2' |5zl 32| z] 12|z} -
AT L1112 % |3 =f2]2|2f2]1]|1}-

111(2]1]1

Figure 10. A phase-changer made from two NOT gates.

yet provided any method by which two signals can cross
over each other.

In faet, this turns out not to be a problem after all.
Crossing two wires over is clearly not going to be possible
in the plane, but Figure 11 shows that a crossing of two
wires can be simulated in the plane by using three splitters

and three XOR gates. An XOR gate can in turn be made out
of AND and NOT gates, as Figure 12 shows. (Planar cir-

cuits like these were discovered by Goldschlager.®)
Figure 13 shows how an AND gate can be constructed.
This is rather more complicated than previous ones. It
takes two input wires If and V, has one output wire, la-
belled T, and has a central square at the heart of the gate
(containing a 4) which is where the signals are combined.
The AND gate has two internal wires, R,S, which are
aligned and looped back to a splitter at the output 7' via a
pair of devices labelled ay, as, az and by, bs, by To analyse
what happens here, we first see what happens if the output
T is true, i.e., il the ¢s are mines and the #'s are clear. In this
case, from the 3 above and below a3, we have that as and
a5 must be mines, so a; is clear, and s is a mine. Similarly »
is a mine. Thus the central 4 already sees four mines—s, f,
r, and the *—so u', v’ are both clear and the in-

A— . . puts U, V are both true. This shows that if ¢ is a
JD B— mine, all the other unknown squares are deter-
mined, and it is straightforward to check that these
values are consistent with the data given.
|D— Now suppose one or both of u, v is clear of
mines, i.e., at least one of the inputs is false. Then,
A —s as we have just seen, t must be clear, and " must
B — _)D be a mine. The central 4 sees 2 or 3 mines out of

Figure 11. Crossing two wires with three xor gates.

A—

B —

Figure 12. Making an xor gate with anp and nNoT gates.

the u', v', and the * So either one or both of r, s
must be mines. We need to check both cases are
possible. But if s is a mine, it is easy
to check that @; and ay being mines
and as clear is consistent with the
data given. Likewise, if s is clear, then
@y and as being mines and ay clear is
consistent. The argument is identical
for 7, so if one or both of the inputs
{1,V is false then the output 7 is false,
and each case is consistent with
the data given. Therefore the whole
configuration represents an AND gate,
as required.

With these building blocks, we now have
enough information on how to convert boolean
circuits to Minesweeper configurations. Figure
14 illustrates the idea for the formula (PV\/ @) /A
(R \/ =). We write a program which, given as in-
put a boolean formula, constructs a Minesweeper

A+ B —

configuration such as that in the figure. The

crossed lines are cross-overs, the filled-in circles

are splitters, boxes denote gates, and the lines

Ulll L2121 111]1 11141

J'1*1,:’1 2 x| =323 (=[2]1[2]x[3[2]1
1ul[1]{1]2]4]*]|slefazjasft [3[t]t'|3[*[*]|2
1|2(2]1]1 | *|*14]{*]|3]2[3|*]|2]1|1]2]¢t]|*[2

2 x|u'|2]2]4ls'(3]1[1J0)1|2[1{0j0[1]2]2]1 T —
2% |*|3|ulu]s|2]1|2 2|22]2]1]{1]¢)1]1 1|1}
2(4|5]*|4[=la) el |12 12|t 1][¢ g|Lfe | e]1}-
2 |*|3|vlo|r{2]2)2 222 2)2} 2{2 &' {2022)2 T}-
20=v'|2]2]4|~[3]1[1]0)1]1[{1]0]|0]1[2]2]1
11212111 x| *[4]*13[2]3|*]|2[1]|1]|2]|¢]|*]|2
T|o|[1[1]{2]4{*|r|blbalbalt'| 3|2t [3]|*[*]2

1(v'[1 2 w323 *[2]1[2]=[3[2]1
‘Tflll 112(2]1 [1]1(1

Figure 13. An AnD gate.

are wires. Square brackets denote terminators, as
in Figure 7(b), except that the terminator marked
T forces this wire to have the value ‘true’. (This
can be done by simply cutting a wire going from
left-to-right just after a vertical row of three 1s.)
It is clear from the diagram how to devise an al-
gorithm that converts an arbitrary boolean for-

BL.M. Goldschlager, “The mongtone and planar circuit value problems are log space complete for P," SIGACT News 9(2) (Summer 1977), 25-29

14 THE MATHEMATIGAL INTELLIGENGER

P {P “good enough” at solving the sort of Minesweeper
; g problems that occur in practice, even though (as-
Qf] suming P # NP) it cannot actually solve all theo-
R} IR retically possible configurations. Many of the other
NP-complete problems known are studied in the

1 1PV Q same way, with a view to finding algorithms that

M] are not guaranteed to work, but do seem to work

_E} 1-Q in most cases of interest. Finally, it is nice to know

1 RV -Q that to current knowledge, there may still be an ef-

M ficient algorithm for Minesweeper, and finding it

A
Figure 14. A Minesweeper circuit for (P \/ Q) /A (R —Q)

mula to a Minesweeper configuration that is consistent if
and only if the boolean formula is satisfiable. Each gate,
terminator, and crossover can be put inside an N X N box
(for some fixed value of N that can be predetermined), and
the overall size of the configuration is therefore of the or-
der of N*n” where n is the number of symbols in the
boolean formula. It follows that our program runs in poly-
nomial time, and hence that SAT is reducible to the
Minesweeper problem. But SAT itself is NP-complete,
hence so is the Minesweeper problem.

It is worth pointing out that the NP-completeness proof
Jjust given is slightly stronger than originally stated. First,
as has been pointed out, no #s need be given in the
Minesweeper configurations used to test the satisfiability
of boolean formulas. This is because the position of these
mines can rapidly be deduced from the numbers in neigh-
bouring squares. More interestingly perhaps—as the ref-
eree of this article has pointed out to me—the configura-
tions may be taken to satisfy the condition that all squares
neighbouring one marked 0 are uncovered. (Certainly all
the gadgets in the figures satisfy this restriction.) This
means that the action of the Microsoft Minesweeper pro-
gram to automatically clear all such squares does not give
any significant help for solving the Minesweeper problem.

Of course the configurations you can get in an actual
game (where the mines are set at random by a computer)
are unlikely to be like any of these boolean circuit config-
urations, so there remains a considerable art to playing the
game, and there are many nuances and different kinds of
deductions that one can make other than those used here.
So it may even be that some polynomial-time algorithm is

could solve one of mathematics's most important
open problems.

Acknowledgment
The author would like to thank the anonymous referee for
particularly helpful remarks on the first draft of this paper,
which have proved invaluable in its revision.

AUTHOR

RICHARD KAYE
School of Mathematics and Statistios
The: University: of Birmingham
Birmingham, B15 2TT
England
e-mail! H.W.Kaya@bham.%c.uk

Richard Kaye studied first at Cambridge and then at
Manchester, ebtaining a PhD:for work on models of arithmetic
under the supervision of Jeff Paris. After six years of post-
doctoral work at Oxford he went to his present position as se-
niar lecturer at Birmingham. He has written a monograph en
models of arithmetic and a textbook on linear algebra. He is
a keen amateur trombonist, and he curréntly leads the trom-
bone section of the Oxford Symphony Orchestra.

VOLUME 22, NUMBER 2. 2000 15

